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ON FOSITIONAL SIMULATION IN DYNAMIC SYSTEMS* 

A.V. ICHIAEHIMSKII, V.I. MAKSIMOV and 1u.S. OSIPOV 

The problem of simulating delays and controls in a dynamic systemdescribed 
by ordinary differential-difference equations is examined. The Simulation 
is carried out in real time by the feedback principle on the basis of 
information and the current phase states of the system, measurable with a 
certain error. The simulation algorithm proposed -an algorithm for 
reconstructing the unknown delays and controls -is a regularizing one in 
the sense that the simulation results become better the less the measure- 
ment errors in the system's phase positions. The ideological source of 
the proposed method of solving the problem is Krasovskii's extremal aiming 
principle /l, 2/. The paper extends the investigation in /3, 4/ and touches 
on /l-S/. 

1. We have the following controlled system: 

5' (t) = f (t, x (t), x (t - r (t)), IJ (0), &I < t < 6 (1.1) 

2 (to + s) = 20 (8). s E 1-B. 01 (1.2) 

Here x is the phase vector, u is the control,7 is the delay, and t is time. We have a measur- 
ing device with a certain error, which estimates the system's phase state x(t) at the current 
instants to it,, @j . The result of the estimation is the vector q(t). It is required to find 
a positional algorithm /l/ which on the basis of this information up to the instant 6 recon- 
structs (in a certain sense) the delay and the control, aswell as the initial state from which 
the system's motion started at the instant to . This is the meaningful description of the 
problem. 

Let us refine the formulation of the problem. Suppose we are given the compacta P c R”, 
QcR” (Ry is a v-dimensional space with Euclidean norm denoted by 11 *]I), the n-dimensional 
function f (t, x, y, u), t E ]&,61, x, y E R”, u E Ry and the numbers a; 0, fi>a. Let 

II* (t) - r 0) u < s+, to d t d 6 (1.3) 

where s(t) is the motion of system (l.l), (1.2). The (Lebesgue-) measurable functions z(t): 
[to, 61 -t 1% Bl and u (t): [to, 61 d P and the Bore1 function x0(s): [-fi, O]->Q are unknown. We 
are given a convex, positive-homogeneous, 
O}), 0 (0) = 0, 

continuous function o(w): R++R+(R+ = {WE Rljw> 
continuously differentiable in the domain {W> 0). 

From a prescribed s > 0 we are required to find a positional procedure for forming the 
control ~8 [tl = u (t, $,t (s)), the delay c. It1 = 7 (t, 9, (4) ($t (4 = 11, (t + 8), s E 1-f3. 01) and the 
initial state zoc Is], -p <s GO, such that 

0 (II x (4 - 2 M II) < 8, to<t<* (1.4) 

where z]t] is a solution of the differential equation 

z'[t] = f (t* z [tl, z It - G Ml, u, M), to < t < 6 

z [to + sl = ZM M, -B < s < 0 

To realize the proposed algorithm it is sufficient to know, at instants :~[t~,t~+ b); 
only the vector q(t). We note as well that the function z,,bl will now be defined up to the 
instant r,+ fi. 

In Sect.1 we indicate a method of solving the problem, suitable for computer realization. 
In Sects.2 and 3 we discuss the convergence of ~~(tl and zoE Irl to the actual ~(1) and zO(s) as 
e-O+. In Sect.4 we give two typical examples. 

The problems of reconstructing the delays, the controls and the initial functions from 
the a priori known set (Crp(t,),Clp(tt),...,C~(:,)) (ti E I&81 are fixed instants of time) were con- 
sidered in /6-8/, where only linear systems were examined in /6, 7/, which in /8/ non-linear 
systems were investigated using the method of linearization and sensitivity theory. An import- 
ant feature of the problems considered in the present paper is that here we are concerned with 
the position reconstruction of these quantities when there is no information on the function 
9 (t), to < tC +J available in advance. 
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We will denoteby {p) and(P, sets of all Bore1 probability measures Pt (dv), weakly 
measurai3l.e in t, concentrated for all t&Z [to,61 in the sets 
s (a) c Rn 

[a,@] and Q,respectively /9/; 
is a closed unit sphere of radius a with centre at zero; II . llc is the norm in 

the space Cn[tO, 61 of n-dimensional functions continuous on [t,, 61; X is the bundle of all 
solutions of system (1.11, (1.21, corresponding to all possible Lebesgue-measurable functions 

u (t): [to, 61 - P;r(t): [t,,f$)-+ta, 61 and Bore1 functions x0 (s): ]-j3, 01-Q; Xt+ C A” is the 
section of the bundle X by the hyperplane t= t,; I!! is a partitioning of the interval It,, 61 
by the points t, < tr <...<&A) =* (I (A) < 00) , with diameter 6 (h) = marI (t,,, - tt);V(z) is 
the gradient of the function O* (x) = of]ix[i)* , a prime denotes transposition. 

In what follows we assume that the function f(t,s, y, u) is continuous in t, U, locally 
Lipschitz in x, 9 and uniformly in te be,@], UEP satisfies the growth condition 

II f 0, 5, Y* 411 =G Cl -I- CZII XII + G/I Y Ii (1.5) 

where Cl, C,, ES are certain constants. We have 

Lemma 1.1. Set X is compact /lo/ in C”lt,, 81. 
We will write an algorithm for solving the problem. We set 

z,fOl = x0 (1.6) 

zm Is] = x*i, s E [tt - 1, - B, 4*1 - to - Bh 4+1 < to + P 

u* ItI = z&g, Te It1 = ta, t E ft,, t&d 
where the vectors xO,xci, UL( and the numbers Gi for t = tt are chosen from the following 
conditions. For t = to $O = f~, U~O is an arbitrary vector from P, x0 and xc0 are any of the 
vectors satisfying the equalities 

(1.7) 

if 9 (to)eQ; if, however, $ (&)E 0, then xeo is any vector from Q. At the instant t = 

tr E (& t, + @) the vectors zriv hit XLi satisfy the relations 

tei = fit Fi’ (* (fi) - r tti)) f (ti* Ip (ti) 

zef, hi) =: max ltt; V’ @ (Q - r (fi)) f (tip ‘10(k). zr uf 

(1.8) 

if 9 (4) f r (td; otherwise, hi and xa are any vectors from P and Q, respectively. Here 

r (r), to < t < tf ) is a solution of the equation 

r* (t) = f (t, $ (tj), %fr W) (1.9) 

tj_,gt<tj, f=i, .‘., 4 r&d=% 

If ti > t, + @, then mLt,rei are chosen, when 9 (ti)$=g(ti) , from the condition 

V’(r/t(t<) - g (ti)) f (tt* Q W 111 fti - %f* Qf w maxwa, 81 v (9 (fi) - g (ti)) f @it * @i)l Ip (ti - Fh @I (1.10) 
WFP 

while when 9 (tr) = g (tr), n.ir $1 are any vectors from P and [a, PI. Here g (t). to f @ < t < tf , 
is a solution of the equation 

g' (t) = f (t* 111 tth \c (t - %h %) (1.11) 

to + B G tj < t < $+1 < ti, g (to + 6) = r ($0 + Iv 

The procedure indicated is carried out up totheinstant & ~6. 

Theorem 1.1. FOK any e> 0 we can find y1 > 0 and m> 0 such that for any number 

Be <-<I and partitioning A with diameter 6 (A)<'& inequality (1.4) holds if z,.]s],us]t] and 

Ts If1 have been defined as in (1.6). 

Proof. We will. adopt the following notation: 

0 = sup {II xii I I E Xr, t E [to, 4, z EZ 0) 
h=sw (II f (trzt Y, u) II ItE&to, tt].x~~‘X,, &~QkJj&J<,X& UEJ’I 

b (6) = sup {II v (xz)II I x E s (Za - 6)). 6 < Za 

'p (a) = SUP {II f (5,x, Y, u) - f @, =, Y, u) II I u E P, 2, y E s (a) 
t, 5 E It,, Sl, I t - 5 I s a) 



711 

Y (t) = r (t) for tE [to, to -k PI, Y (t) = g (t) for t E ($0 f p, 61, r (1) and g (t) are solutions of 
(1.9) and (l.ll), resnectivelv. We will fix E,> 0 and show that numbers a,> 0 and fix > 0 
exist such that for ail fi* <<rBr and 6 (A)<&-- 

0 (II 5 0) -Y (t) II) < El> to < t Q 6 

In view of the properties of 0 we find S,> 0 such that 

0 (20) < 4 = V*Er 

for u) E 10,6,1 . Taking into account the estimate 

II Y 0) --3 (t) - Y (&) -t ip (ti) II < B* $_ 2h6 (A), t 5 ltr, k+:I 

we select the nlimbers69E (0, &), &> 0, starting from the inequality 

B, + %,b, < 'I,&' 

(1.12) 

(1.13) 

(1.14) 

Let us assume that inequality (1.12) is violated for some TV ]t,,6]. By virtue 
continuity of the functions o (1~) and ]]z(t)-y(t)]] we can construct an interval It,, 
e] in which 

0 (II = W - Y (t) III > Et 
Let i, = max {i E IO: l @)I I tt < t*}, 4 = min Ii E [O: I (A)1 I 4 > PI. Then when 6 (A) Q 6, 

B* the estimates 

II Y (t) - .z (t) II > ‘&, h, < t G t*; II Y (h) - 1c) (4) II > 
112& 9 i, < i < i, 

(0 (II Y (ti) - 5 (4) II) S max {c,, 0 (II 2 @,) - 5, II)) < E2 

(1.15) 

of the 
r] c [to, 

(1.16) 

and Be< 

(1.17) 

(1.18) 

follow from (1.13)-(1.16). In the interval [ti,, t*] the function 0 (I] 5 (t) - y (t)II) is absolut- 
ely continuous: therefore, for t E Iti, ttd c Iti,, Ql n It,, to + PI 

(0 (II Y (4 - =@I II) < o(ll Y (k) - z(4)ll)ij v’(5G)- (1.19) 

y (&I) if (%7 5 (E), 5 (E - f (%)I* u (E)) - f d a,ti,~ %i, w d% 
Since the function V(z) is continuous in the domain {.ZE R" 1 II zI[ > 0) and Lemma 1.1 holds, 
from s3 > 0 we can find S, = 6, (es)> 0 such that for 6 (A) < 6,, F, CE: It*, h+J, i, < i < i, 

II Jf b Vf) - Y @i)) - v (r (E) - y (5)) I] < es (1.20) 
Moreover, this estimate is uniform with respect to all t(s), y(a) satisfying (1.17) and all 
partitionings A with diameter 6 (A) <6,. In addition> uniformly in Ye Q, so X, u E P 

II f (E, .z (f), YT LL) - f (tl 2 (t), Y9 u)ll 4 L I 5 - t I + cp (I % - t I) (1.21) 

where L is the Lipschitz constant of the function f(t, 2, y, u) in a domain D C Rn in which 
all the motions being examined remain. Thus,for p* < fJs and 6 (A)< 6, = min {6,, 6,}, from 
(1.19)-(1.21) we obtain 

Q (II Y (0 - 2. (1) II) < 0 (II Y (b) - z tti) II) f j, v’ (9 (4) - Y(b)) (f (43 * tfi)? 5 (5 - ‘5 6)). IA (E)) - f (f13 (1.22) 

In turn, from this and from (1.18), (1.19) it follows that 

0 (II Y (t) - z (t)(I) < 0 (II Y (ti) - I (t,)II) + P (es, I&, 6 (A)) 6 (A), t E It,, h+,l (1.23) 

Let t E Iti. tr+J C Itilt &,I n [to f BV 61. Then, as for (1.22), we derive an estimate from 
which, by virtue of (l.lO), (l.ll), we obtain 

(0 (II Y (t) - J (t) II) < 0 (II Y (td - 5 (td II) +- {F (e,,. S3, 6,) -I- b (‘/A) LB,) (6 - toI, t 5 lk,, h,l (1.24) 

We will assume that the numbers 631 B 3 and 6, satisfy the inequality 

(V (s,, I%, 65) + b (liz&)&&@ - to) < sz (1.25) 
Then from (l-18), (1.24) we obtain a contradiction with (1.12). Iience, if as fi, and 6, we 
take & = PS (81) and 6, = 6, (81) defined in accord with the procedure indicated above, then in- 
equality (1.12) is satisfied. 

Let us now estimate the change in the function w(]Iz[t] -s(t)]]) as t varies within the 
limits to to 6. Sinceo (U)is an increasing function, we have 
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(1.26) 

Q,L (t - to) 6 (1) + 2&J 0 - to); k = 

From (1.12) and (1.26), taking into account the convexity and positive homogeneity of the 
function 0 (20) , on the strength of Jensen's integral inequality /LO/ we have 

o (11 z [t] - z(t) 11) < 2~4’s o (,,z [E] - 5 (6) 11) d5 +- elf o (a (6 -- to) 6 (A) + 28, F-’ - to)) 
9 

Consequently 
o (IIs [tl - = V)(I) =G (8, + (* - to) o (a6 (A) + 2Pdlx exp 2L (t - to) 

Now we can sety, = min (6, (e,), 6e (e)), yz = min {/% (J%), f14 (e)} , assuming that a,, 84 and 6, sat- 
isfy the inequalities 

e, exp 2L (tl - to) Q ‘/,e 

0 (a (tb - to) he + 34 (6 - to)) exp 2L (fJ - to) < %e 

The'theorem is proved. 
Suppose a certain sequence of numbers {ej), Ej+0 -5 as j-00 8 is specified. From 

Theorem 1.1 we have 

Corollary 1 .l. Number sequences {8j} and {Bj*), 6; *O-i-, PI* 
that for any partititionings A,= (tp), i = 0, . .., L(A,)( m with 
for any functions $p~ (t),II$j (t) - 2 (t)Ilc < PI*, the inequalities II 

Here zj [t] is a solution of the equation (T It: eJ1 =GJ [tJ) 

2’ [tl = f (t, 2 M, 2 It - r It; e,ll, uq [tl) 
t, < t<fi, 2 ito + Sl = ZoeJ [Sl 

+O+as j-00, exist such 
diameters 6 (Al)< 6j and 
Zj [tl - z (t) Ilc < ej hold. 

(1.27) 

while the functions ZW, Id, u,lItl,~~jItl are determined from *j(t) by the algorithm presented 
above. 

2. Suppose that the functions Z,,(S) and u(t) are known and that the signal q(t) enters 
without noise ((fl* = 0) in (1.3)). The question arises as to the convergence of the sequence 
'c It; e,l to z(t). Statements yielding a satisfactory answer to this question in certain cases 
are proved below. Subsequently, for brevity we will omit the symbol u(t)in (1.1). 

Theorem 2.1. Let. a unique measure ).~~*(du)E {p} exist such that 

Then z It; ejI + r (t) in Ls” [&, 61. 

Proof. Assume that we can find a subsequence {Z it; “j(i)]) o’(i)+00 as i-too) such aat 
IT it; ejct,l + T (t) in Ll"[to,+].~et {Q)(dv)} E {p} be a sequence with the property 

12.2) 

(here and below zi [11 is a solution of system (1.27)). Then, without loss of generality we 

can assume that 

@" (du)+ & (dv) weakly 

Because, if @t (du)= pt*(du), then, as follows from 
01. Therefore, in c" {t,,,Sl 

191, & W # I.+* (dv) (2.3) 

the results of /II/, r It; aj(i)) -t z (t) in Lz”It,, 

Iim {z (to) + 5 5 i (E, r (S), x (5 - u)) &“” (du) d&= (2.4) 
i-0 k h[cr,!31 

~~~zjCV I'1 =+,)+(s 5 f(B;(f)tr(E-u))~~(du)dE 
1. [a.01 

However, by hypothesis, a unique measure satisfying (2.1) exists. Consequently, by virtue of 

(2.31, (2.4) we can find t*~[t,,fi] such that lim Zj(i) [t,l #$((t*). This contradicts the fact 
i-ra 



that SI [t] d 2 (1) in C"lt,, 61 (see Corollary 1.1). The theorem is proved. 
We willdenotebyL thesetof measures pf (do) E {PL) satisfying (2.1). 

Theorem 2.2. Let any measure pLt(du)~ L be concentrated. Then the sequence {Z [t; Ej]) 

converges in L~nIt,,61 to L. 
The proof is the same as the proof of Theorem 2.1. 

Theorem 2.3. Let f 0, =, Y) = A (4 Y + f 0, 4 and let the matrix A (t), t, < t <S be non- 
singular. Then s(t- r It; ELI) + 2 (t - T (t)) weakly in Ls” It,, 61. 

3. Let us find the conditions for the convergence of &,[S] to 50 (S) when the delay 

?z (t) = fJ = const is known and b* = 0. Here we assume 6 = t, + p. 

Theorem 3.1. Let a unique measure pt (du)~ {rl) exist such that 

=(t)==(to)+ ss f(%~=(%.),f-+)p~(~u)~%~ to<t<<6 (3.1) 
1.Q 

Then zoLr [sl -+ x0 (s) in &"I+4 01. 

Theorem 3.2. Let the conditions of Theorem 2.3 be satisfied. Then %e, [Sl * GJ (s) 

weakly in Lt”[-fi, 01. 
The proofs of Theorems 3.1 and 3.2 are analogous to those of theorems 2.1 and 2.3, re- 

spectively. 

Notes. lo. The assertions in this paper remain valid if a compactum T,C [a, B1 is known 
such that rot. for all ZE[:~.~]. In this case the set T,, and not [a,Bl, will figure in 
all our constructions. 

20. When T.=(a, B) condition (2.1) will be satisfied if for any t~[t~,~l,=(t+~~)~=(t+‘~) 
for all sl, 0, E lar, bl and for any u,, Sr E s (a), y1 # y, 

f (:. 2 (:)V e1) # f (G 2 (G us) for almost all t= 110, @I (3.2) 

30. Condition (3.1) will be satisfied if set Q consists of two points and (3.2) isvalid. 

4. The problem of reconstructing the initial function z,,(S) was modelled for the system 

z’ (t) = 2,5cos z (t) + 1,7sin z (t - 1) (4.1) 

0 <t ,(I, ZE R', 0 = {O, 2) 

It was assumed that S(A)= ti+l - t, = 0.005. The trajectory s(t)of system (4.11, corresponding 
to 50 (s) = 2 for .y E l-l/,, 01 and to z0 (s) = 0 for s E i-1, -V2), was calculated by Euler's 
method. 

Fig.1 shows the functions z,[S] (the solid lines) and 
3 

_i 

+, [S] (the crosses) corresponding to J, (tt) = 5 (tt) -I- 0.01 
2 and 9 (2‘) = 2 (ti) - 0.1. The estimate 1 z (t) - z,[t] (C < 0.02 

(lz (tj - z, It] Ic < 0.11. is valid for the motions = 0) and 

21 III (G M). where ,S [t] (z,[t]) corresponds to the initial 
function 

1 
&[s] (za[sf). The problem of reconstructing z0 (s), 

11 0) and s(t). was simulated for the system 

51' (t) = =z (t), 5' (t) = -36x1 (t) - u (t) x1 (t - ‘c (t)) -92, (t) (4.2) 

Fig.1 

It was assumed that 6 (A)= &+I - tt = 0.01, while the trajectory x (t)of system (4.2) was 
generated by the control u(t)= -3sint, the delay r (t) = 1 + sin&2 and the initial function 
50, (s) = 4,1 + 0.9 cos s, ze (s) = sin s. 

Figs.2 and 3 show the functions x0, (s),zo2 (s),r (t), u (t) (the solid lines) and the functions 
zOe Is1 = {zl 1~1, zI IS]}, ut [tl, T, [tl (zl is] and u,[tl are denoted by dashes, while z,[s] and z* it1 
are denoted by crosses). The estimate 

II x (t) - 2 [tl 11 Q 0, 1, 0 < if < 4 

is valid for the motions x(t)and S[tJ 
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Fig.2 Fig.3 
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THE METHOD OF PURSUIT BY SEVERAL CONTROLLED OBJECTS OF DIFFERENT TYPES* 

N.L. GRIGORENKO 

The problem of the pursuit of one evader by several controlled objects of 
different types is examined. The sufficient conditions are obtained for 
the pursuit game to terminate in a finite time. The proposed method of 
pursuer interaction assumes that the pursuing players are separated into 
two groups, the first of which holds the evader in some domain, while the 
second searches for the evader in this domain. The paper touches on the 
researches in /l-9/. Typical examples illustrate the results. 

Let the motions of the vectors Zlr....Zm in the n-dimensional Euclidean space Rn be 
described by the equations 

Zi' = cizi + si - ", zi (0) z zi", i = 1, . . ., m (1) 
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