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ON POSITIONAL SIMULATION IN DYNAMIC SYSTEMS

A.V. KRIAZHIMSKII, V.I. MAKSIMOV and Iu.S. OSIPQOV

The problem of simulating delays and controls in a dynamic system described
by ordinary differential-difference equations is examined. The simulation
is carried out in real time by the feedback principle on the basis of
information and the current phase states of the system, measurable with a
certain error. The simulation algorithm proposed — an algorithm for
reconstructing the unknown delays and controls —is a regularizing one in
the sense that the simulation results become better the less the measure-
ment errors in the system's phase positions. The ideological source of

the proposed method of solving the problem is Krasovskii's extremal aiming
principle /1, 2/. The paper extends the investigation in /3, 4/ and touches

on /1=5/.
1. we have the following controlled system:
Z@O=f@tz@ zt—T@) @) <Y (1.1)
z(tp+8) =208, s=[-p, 0 (1.2)

Here x is the phase vector, u is the control, T is the delay, and t is time. We have a measur-
ing device with a certain error, which estimates the system's phase state z (!) at the current
instants t = [t,,, 9] . The result of the estimation is the vector % (t)e It is reguired to find
a positional algorithm /1/ which on the basis of this information up to the instant ¢ recon-
structs (in a certain sense) the delay and the control, as well as the initial state from which
the system's motion started at the instant t, . This is the meaningful description of the
problem.

Let us refine the formulation of the problem., Suppose we are given the compacta P C R™,

Q C R" (RY is a v-dimensional space with Euclidean norm denoted by || ‘ll), the n-dimensional
function f(t, z,y, u) tt, 8], 2,y = R", vER" and the numbers o > 0, f >a. Let
e @) —2z @< Ber LI E (1.3)

where z (f) is the motion of system (1l.1), (l.2). The (Lebesgue-) measurable functions 7 ({):

lty, 8}~ [, Bl and u (t): [to, ¥] — P and the Borel function z,(s): [—f, 0]~ Q are unknown. We
are given a convex, positive-homogeneous, continuous function o w): R, - R, (R, ={w e R|w >
0}),® (0) =0, continuously differentiable in the domain {w > 0}.

From a prescribed £ >0 we are required to find a positional procedure for forming the
control ugltl = u (¢, ¥ (s)), the delay 7. [t] =t (t, ¥, (5)) (b (s) =% (t+35), s&1—B, 0]) and the
initial state gz, [s], —B <5< 0, such that

efiz@)—zll<e, LH<ILE (1.4)

where z[fl is a solution of the differential equation
S =1f@ 208, z[t —vwlil, wl2]), t, <t B
2ty 48l = z0alsl, =P L0

To realize the proposed algorithm it is sufficient to know, at instants telt, t, + B);
only the vector (). We note as well that the function zls will now be defined up to the
instant ¢, 4+ B.

In Sect.l we indicate a method of solving the problem, suitable for computer realization.
In Sects.2 and 3 we discuss the convergence of T,(f] and 1z, [s] to the actual t(2) and z,() as
e—0+. In Sect.4 we give two typical examples.

The problems of reconstructing the delays, the controls and the initial functions from
the a priori known set {Cy(),C¥(4y),. - ., Ch ()} (ti & [t 8] are fixed instants of time) were con-
sidered in /6—8/, where only linear systems were examined in /6, 7/, which in /8/ non-linear
systems were investigated using the method of linearization and sensitivity theory. An import-
ant feature of the problems considered in the present paper is that here we are concerned with
the position reconstruction of these quantities when there is no information on the function
P(t), b €t< ¥ available in advance,
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We will denoteby {pu} and {u,}the sets of all Borel probability measures p; (dV), weakly
measurable in t, concentrated for all t<{t,,®] in the sets [a, Bl and Q,respectively /9/;
S (@) C B 1is a closed unit sphere of radius a with centre at zero; || -ll¢ is the norm in
the space C"{t,, 8] of n-dimensional functions continuous on {#,, #]; X is the bundle of all
solutions of system (1.1), (1.2}, corresponding to all possible Lebesgue-measurable functions
u (1) {tg, 8] = Pyt () [§,, 8] ~ [, B] and Borel functions () [—B, 01— Q; X;,, TR® is the
section of the bundle X by the hyperplane ¢ =1{,; A is a partitioning of the interval I[¢,, 8]
by the points &, <ty <...<tya) =& (I(A) <o) , with diameter & (A) = max; (t;,; — t,}; V (2) is
the gradient of the function ®, (&) = o (izll); a prime denctes transposition.

In what follows we assume that the function f(t, z, ¥, u) is continuous in ¢, u, locally
Lipschitz in z, y and uniformly in tel(f, 4], ue P satisfies the growth condition

Hf@ 2y wilea+allzll+cligll (1.5)
where ¢, &, ¢3 are certain constants., We have

Lemma 1.l1. Set X is compact /10/ in C™li,, 1.
We will write an algorithm for solving the problem. We set
2 [0] = 24 (1.6)
Zoe [s] = x4, s = “( — 1 "‘ﬁv by — by — ﬁ)y by < to + ﬁ
Ug {t] = Ugiy Tp ft] =14, t= {tiv ti-(-l)
where the vectors =y, Tei, ey and the numbers Te for ¢ =1; are chosen from the following
conditions. For f =1, Te = B, Uy 1is an arbitrary vector from P, z, and =z, are any of the
vectors satisfying the equalities

o (| () — %o 1)) = ming=q © (1 (to) — Zol) (L.7)
V' (4§ {ty) — 7o) {to, ¥ (to)y Tens Ugy) =
maxz=q V' (§ () — Zo) | {tes § (to)s % teo)

if v (@) & Q: if, however, ¥ {t,) =@, then e is any vector from Q. At the instant ¢ =
t, € (t,, ty + f) the vectors e, Uw, Zu satisfy the relations

Ta=0, V @@)—rE)FfE, ) (1.8)
Tets Uet) = max:e;éx VO (ty) —r (&) f (ts B (83}, 7 1)

if ¢ () 5= r(t); otherwise, U, and Zu are any vectors from P and Q, respectively. Here
r{t), t, <t<t, is a solution of the equation

r=f0Y (t))s Zess Ue;) (1.9)
La <t < 8 j=1, ... & ri) =%

IEf ¢, >t + B, then uy Ta are chosen, when () # ¢ (&) , from the condition
V() — g (&) ] (B i) $ (8 — Tath i) = Waxte(a, ) Vi) — g ) fla v {tp ¥t —8huy  (L.10)

while when ¥ (t) = g (t), Uei, Tei are any vectors from P and la, B]. Here g (8), L +B<t <t ,
is a solution of the equation

@ =10 w{t) ¢ —rvyh dy) (1.11)
b+ Bt g < Uy gy +B=rH+H

The procedure indicated is carried out up to the instant # =%,

Theorem 1.1. For any e>0 we can find ¥, >0 and ¥, >0 such that for any number
By <7, and partitioning A with diameter § (A) <9, ineguality (L.4) holds if zelsl, ugltl ang
t¢It] have been defined as in (1.6).

Proof. We will adopt the following notation:
a=sup{llziilzes X, t=lt, 8, 220}
bu=sup {} f (& 2« y» u) | | I=ter Bl 221X, YiEIQ [_{ i ﬁyg( ;X‘)’ ue=Py}
@) =sup{iV@ilize=S @a~06)), 6 2a

e @) =sup {l/ @ 2pu)—fltzy w)llucsP.zys S (a)
il 8, [t =81 <a}
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y@=r@) for t=lty, to+pl, y(t) =g @) for t& (4, + B, 8], r(t) and g (t) are solutions of
(1.9) and (1.11), respectively. We will fix g, >0 and show that numbers & >0 anda ;>0
exist such that for all B <P, and & (d) <3,

e{lz@ -y O <en LIS (1.12)
In view of the properties of @ we find §, > 0 such that
© (w) < gg =18y (1.13)
for wes[0,6,] . Taking into account the estimate
ly @ —z (1) —y @) + % @)1 <Bu + 268 (8), =1ty bl (1.14)
we select the numbers 6; € (0, §8,), Ps > 0, starting from the inequaliZzy
Bs + 2838, < 1,85 (1.15)

Let us assume that inequality (1.12) is violated for some ¢t = [t,, ¢]. By virtue of the
continuity of the functions © @) and ||z () —y (#)|| we can construct an interval It,, t*] C Iy,
#] in which

ollz@®—y @ >e (1.16)
Let i =max {ie[0: 1 (A)] | <t} & =min {[0: 1(A) | ¢4 > t*}.  Then when § (A) <8, and By <
Bs the estimates

Hy @) —z @) >y i, <t Ny ) —¥ E)I> (1.17)
Yy 4 Ly
o(ly @) —z@)l) <max{e, ol z(t)—2ID}<e, (1.18)
follow from (1.13)—(1.16). 1In the interval [, ¢*] the function e (z () — y (1)]]) is absolut-
ely continuous: therefore, for te= [, b, C ik, &1 [ (L, & + pl
H
T . o san
(‘)(“y(t)_x(t)“)<w(uy(ti)"1(ti)")"r} z(@®) — (1.19)

yENVU Gz EhzE— @) u@)— /6 lP(ti)v Zeis Uni)} A8

Since the function V (z) is continuous in the domain {zx < R™ || z|| >0} and Lemma 1.1 holds,
from g, >0 we can find 8, = §, (8,) >0 such that for & (A) 8§, Eeslty, hiyl, & i<,

NVEE)—yt)—VEE —yE)i<e (1.20)

Moreover, this estimate is uniform with respect to all =z (-), ¥ (‘) satisfying (1.17) and all
partitionings A with diameter 8 (8} << §,. 1In addition, uniformly in y&= @, z(-)=X, usP

NFG =@ pow)—Ffz@y IKL[E~t]+o0E=2] (1.21)

where [ is the Lipschitz constant of the function f({, z, y, u) in a domain D C A™ in which
all the motions being examined remain. Thus, for f, << B; and 6 (A) < 8, = min {5,, 8,}, from
(1.19)—(1.21) we obtain

o(lyt)—z@N<o(lyt)—z) 11)4 V) —y ) to vtz E~TE)hu@)—f(tn  (1.22)

1

L7 (ti)v Zeis uei)} d§ + @ (33, ﬁw é (A)) & (A)
T = degdy + b (8)(20 ( (A) + L6 (A) + Lf,)

In turn, from this and from (1.18), (1.19) it follows that

m e 4 PSRN T — o £ osAN

ofly@—z@Ih<eo(ly @) —z0)) 4+ (s Bar 6 (AN (4), &1k, tinl (1.2
Let t &= [ty tal T i, i) N [t + B, 8],  Then, as for (1.22), we derive an estimate from
which, by virtue of (1.10), (l1l.1ll), we obtain
ofly@—z@ON<eollyt)—= @) 1D +- {® (esv Bar 85) + b (Mo8;) LBy} (@ — o), t = [ty 8] (1.24)
v

We will assume that the numbers &s, B2 and 8, satisf

and the inequalitv
- +Heglhasaty

Lence, i as gy anc o

{P (s, Bsy 85} 4 b (1B )LBA} (B — 8,) < &, (1.25)
Then from (1.18), .24) we obtain a contradiction with (1.,12). Hence, if as B, and §, we
take fi5 = B3 (gy) and 6, = 65 (2,) defined in accord with the procedure indicated above, then in-

equality (1.12) is satisfied

Let us now estimate the change in the function @

et Uus estinate The change

limits t, to ¥ . Sinceo® (W)is an increasing function,
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o(lz(tl—y O1) < ‘o (AL {1z -2 @ 148 + (1.26)

&

QL (t— to) 8 (A) + 2B, L(t — to): b = Lo t& i to ]

2! t E (tO ‘7" ﬁf ﬁ]

From (1.12) and (1.26), taking into account the convexity and positive homogeneity of the
function © (w) , on the strength of Jensen's integral inequality /l10/ we have

ozl —z @)D <2L{ oz B — 2@ Nt + &+ 0 (@ (B 1) 8 (&) + 28, (8 — 1))

t
te

Consequently :
ozl —z @D < {er + (& — %) o (ad (8) + 2B,)}x exp 2L (¢ — t,)

Now we can set y; = min {6, (&), 8¢ (e)}, 7. = min {B, (&1). B, (6)} , assuming that &, By and 8 sat-
isfy the inequalities

e, exp 2L (& — 1) < Yoo
o (@ (@ — t;) 8g + 2B, (@ — £,)) exp 2L (& — ) < e
The theorem is proved.

Suppose a certain sequence of numbers {e;}, e;—~>014 as J—=> oo+ is specified. From
Theorem 1.1 we have

Corollary 1.1. Number sequences {8;} and {B;*},6;—>0+,8* —>0+as j— oo, exist such
that for any partititionings A; = {0}, i =0, ..., I{4;) < co with diameters & (4;)) <{§; and
for any functions v; (&), | %; () — z @)llc < B;*, the inequalities |l z;[t] —z(f)lle <& hold.

Here z,[t] is a solution of the equation (¥t &l = Ts, [2l)

Tl =7t 2t 2l — 6 el ug 8] 2
ty <t <O, zlty + sl = ze, (o]

while the functions Ze, Isl, ug,[t],T.j[tl are determined from ¥;(t) by the algorithm presented
above.

2. Suppose that the functions z,(§) and u (f) are known and that the signal ¥ (f) enters
without noise ((By = 0) in (1.3)). The question arises as to the convergence of the sequence
t[t; e to v (t). Statements yielding a satisfactory answer to this question in certain cases
are proved below. Subsequently, for brevity we will omit the symbol u (t)in (1.1).

Theorem 2.1. Let a unique measure i,*{dv) = {u} exist such that
¢

s =zl +§ § F@zEzE—v)pe* @)dE H<<H (2.1)
te [, B]
Then <[t el — 1 (t) in Ly [£, Bl
Proof. Assume that we can find a subsequence {t[f &;yl} (/ (i) > o as i—o) such that
Tl ejpl A v () in Latlt,8]l. Let {u, (dv)} = {u} be a sequence with the property
t

(¢ [E 2 Er s E— vl @) dE =1 E 5Bl L E—vEeDdd <<t (2.2)
81

t (o, to
¢

(here and below z;[tl is a solution of system (1.27)). Then, without loss of generality we
can assume that

p (dv) — @y (dv) weakly (9], Py (dv) = pe* (dv) (2.3)

Because, if @, (dv) = p,*(dv), then, as follows from the results of /11/, <[t e;ul — 7 () inLJ"{t,,
#]. Therefore, in C" {t,, &l

t

lim {z(t) +§ § & z@z@—v)pd® (o) di= (2.4)
et Bl

s [,
t

limzo(=z() +§ § /(G I@2@—v)i@)dE
e ty (@, B]

However, by hypothesis, a unique measure satisfying (2.1) exists. Consequently, by virtue of
(2.3), (2.4) we can find t, < [t;, #] such that lim z;6 (8] 5= ¢ (¢,). This contradicts the fact

i
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that % [tl—=>z () in C"lt, ®] (see Corollary 1.1). The theorem is proved.
We will denote byL the set of measures W, (dv) & {p)} satisfying (2.1).

Theorem 2.2. Let any measure p, (dv) & L be concentrated. Then the sequence {t[¢; g}
converges in L,"[f,, #] to L.
The proof is the same as the proof of Theorem 2.1.

Theorem 2.3. Let f(t, z, yy = A )y + f(t, z) and let the matrix A (f), {, <t <® be non-
singular. Then z(t —tlt el)—> 2z (t —1(t)) weakly in Ly" (¢, 9]

3. Let us find the conditions for the convergence of Zoe; Is] to %, (5) when the delay
T(t) =P = const is known and P, = 0. Here we assume ¢ =1, + f.

Theorem 3.1. Let a unique measure p,(dv) = {p,} exist such that
1

=zt + (1@ 2@ Hu @) H<I<H (3.1)
1, Q

Then 2., [sl >z, (s) in Lg*[—p, O].

Theorem 3.2. Let the conditions of Theorem 2.3 be satisfied. Then % lsl =z, (5)
weakly in L."[—B, O]

The proofs of Theorems 3.1 and 3.2 are analogous to those of theorems 2.1 and 2.3, re-
spectively.

Notes. 1°. The assertions in this paper remain valid if a compactum 7T, Cla, Bl is known
such that ()T, for all :e (4, ¢]. In this case the set T,, and not [a,B}l, will figure in
all our constructions.

2°. when T,= {a, B} condition (2.1) will be satisfied if for any telt), 8,z (¢t + &) F z (£ + 5)
for all s.su=le, Bl and for any w,¥: =S (a), 1 F b2

f(tz (), ) #F=f(tz(t)y) for almost all te [t,, 9] (3.2)
30, cCondition (3.1) will be satisfied if set Q consists of two points and (3.2) is valid.
4. The problem of reconstructing the initial function z,(Ss) was modelled for the system
z' (t) = 2,5¢cos z (t) + 1,7sin z (t — 1) (4.1)
0<t<<1, z€ R, Q={0, 2}
It was assumed that § (A) = tiy; — t; = 0.005. The trajectory z (f) of system (4.1), corresponding
to z,(s) =2 for se=l[-1,, 0] and to z,(s) =0 for s<[—1, —1,), was calculated by Euler's
method.
Fig.l shows the functions 2y, [s] (the solid lines) and
Ze ISl (the crosses) corresponding to ¥ (&) = z (t;) + 0.01
B o ¥4 and $ () =z () —04. The estimate |z () — zit] le < 0.02
(lz () — 2, [t] |¢ <<0.1). 1is valid for the motions z () and
zy [#] (z, [#]), where gz [1] (3, [t]) corresponds to the initial
function Zg, [s] (2 [-ﬁ). The problem of reconstructing z, (s),
u() and 7 (). was simulated for the system

2 () =2, (1), z' () = —36z, (t) —u(t)z (¢t —T(t) =9z () (4.2)

[3)

A o "
-1 -0§ 0s 0<<i<4, a=0, p=2, P={u||lul|<3}

Fig.l 0={($1, z,)llx,l<5, |12|<1}

It was assumed that 6 (A) = 3 — ¢, = 0.01 , while the trajectory z (t)of system (4.2) was
generated by the control u () = —3sinf, the delay 7 () =1 4 8in 0,2 and the initial function
Zy, () = 4,1 + 0,8 cos 8, z4, (5) = sin s.

Figs.2 and 3 show the functions 2z, (s), Ty, (8), T (£), # () (the solid lines) and the functions
Zoe 18] = {2, [s], 2, [s]}, up 3], 7 [2] (2, [s] an@ we[#] are denoted by dashes, while z,{s] and 1,[t]
are denoted by crosses). The estimate

fz@ —z0IN<<0, 1, 04

is valid for the motions z (t)and z[¢)
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THE METHOD OF PURSUIT BY SEVERAL CONTROLLED OBJECTS OF DIFFERENT TYPES
N.L. GRIGORENKO

The problem of the pursuit of one evader by several controlled objects of
different types is examined. The sufficient conditions are obtained for
the pursuit game to terminate in a finite time. The proposed method of
pursuer interaction assumes that the pursuing players are separated into
two groups, the first of which holds the evader in some domain, while the
second searches for the evader in this domain. The paper touches on the
researches in /1~-9/. Typical examples illustrate the results.

Let the motions of the vectors 2, ...,2m in the n-dimensional Euclidean space R" be
described by the equations

2 =Cizi+uy—v, z; O=z° i=1, .., m (1)

*prikl.Matem.Mekhan.47,6,891-897,1983



